On the Homotopy Theory of Enriched Categories
نویسنده
چکیده
We give sufficient conditions for the existence of a Quillen model structure on small categories enriched in a given monoidal model category. This yields a unified treatment for the known model structures on simplicial, topological, dgand spectral categories. Our proof is mainly based on a fundamental property of cofibrant enriched categories on two objects, stated below as the Interval Cofibrancy Theorem.
منابع مشابه
Homotopy Locally Presentable Enriched Categories
We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where all objects of V are cofibrant.
متن کاملHomotopy Limits and Colimits and Enriched Homotopy Theory
Homotopy limits and colimits are homotopical replacements for the usual limits and colimits of category theory, which can be approached either using classical explicit constructions or the modern abstract machinery of derived functors. Our first goal is to explain both and show their equivalence. Our second goal is to generalize this result to enriched categories and homotopy weighted limits, s...
متن کاملHomotopy (limits And) Colimits
These notes were written to accompany two talks given in the Algebraic Topology and Category Theory Proseminar at the University of Chicago in Winter 2009. When a category has some notion of limits and colimits associated to it, its ordinary limits and colimits are not necessarily homotopically meaningful. We describe a notion of a “homotopy colimit” for two sorts of categories with a homotopy ...
متن کاملHomotopy Coherent Adjunctions of Quasi-categories
We show that an adjoint functor between quasi-categories may be extended to a simplicially enriched functor whose domain is an explicitly presented “homotopy coherent adjunction”. This enriched functor encapsulates both the coherent monad and the coherent comonad generated by the adjunction. Furthermore, because its domain is cofibrant, this data can be used to construct explicit quasi-categori...
متن کاملWeak Complicial Sets A Simplicial Weak ω-Category Theory Part II: Nerves of Complicial Gray-Categories
This paper continues the development of a simplicial theory of weak ω-categories, by studying categories which are enriched in weak complicial sets. These complicial Gray-categories generalise both the Kan complex enriched categories of homotopy theory and the 3-categorical Gray-categories of weak 3-category theory. We derive a simplicial nerve construction, which is closely related to Cordier ...
متن کامل